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Abstract. The topic of finding effective strategies to restrain epidemic spreading

in complex networks is of current interest. A widely used approach for epidemic

containment is the fragmentation of the contact networks through immunization.

However, due to the limitation of immune resources, we cannot always fragment

the contact network completely. In this study, based on the size distribution of

connected components for the network, we designed a risk indicator of epidemic

outbreaks, the generalized Herfindahl–Hirschman Index (GHI), which measures the

upper bound of the expected infection’s prevalence (the fraction of infected nodes) in

random outbreaks. An immunization approach based on minimizing GHI is developed

to reduce the infection risk for individuals in the network. Experimental results show

that our immunization strategy could effectively decrease the infection’s prevalence as

compared to other existing strategies, especially against infectious diseases with higher

infection rates or lower recovery rates. The findings provide an efficient and practicable

strategy for immunization against epidemic diseases.

1. Introduction

The spreading phenomenon is a pervasive process in nature that describes many essential

activities in society, such as infectious disease outbreaks, information dissemination,

viral marketing, etc [1–4]. Nowadays, a potential pandemic can possibly reach every

city in the world within a few days, which allows for a local disease to evolve into a

global pandemic. This is what happened with COVID-19 [5–8]. It is thus urgent and

essential to design efficient mechanisms for the restraint of epidemic spreading.

†Author to whom any correspondence should be addressed.
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Efficient network immunization strategy 2

Complex networks have been proven to be a powerful analytical tool for predicting

and controlling epidemic spreading in real-world scenarios [9–11]. These infectious

diseases are transmitted in a population through the network of contacts between

individuals. One of the critical problems is how to best distribute limited treatment

and vaccination resources to suppress disease outbreaks [12, 13]. There has been an

abundant production of heuristic rankings [14–17] for vaccination or quarantine to

identify influential nodes in networks. Some local strategies, such as acquaintance

immunization [18] and random-walk immunization [19], have been introduced when

the complete knowledge of all individuals is not known. The sampling method was

also considered for the immunization strategy of hidden populations [20]. Moreover,

recent studies [21, 22] seeking immunization strategies have applied message passing

techniques, which consider both the network topology and epidemic dynamic. In fact,

the immunization problem is similar to the network disintegration problem [23–25],

which focuses on the destruction of harmful networks through targeted attacks.

The network disintegration problem focuses on determining a set of vertices or

links whose removal would collapse the giant connected component (GCC). The most

traditional solutions to this problem are node ranking methods [26–28], which identify

the sequence of nodes that will maximize the damage to the network’s connectivity.

The importance of nodes is often represented by node degree, betweenness, or k-shell

centrality, etc [29]. Significantly, the adaptive centrality strategy, which recalculates

the centrality of the undismantled nodes at each step, can dramatically improve the

effect of dismantling [30]. Recently, several practical algorithms have been proposed

for dismantling a network based on collective influence (CI) [31], decycling and tree

breaking [32, 33], optimal partitioning of graphs [23, 34], explosive percolation [24],

or articulation points [35]. Moreover, combinatorial optimization-based approaches,

including tabu search [36, 37], evolutionary algorithm [25], and the deep reinforcement

learning framework [38], have been presented to search for the optimal disintegration

strategy.

Connectivity is necessary for a network to maintain its function, so the complete

fragmentation of a network is the common goal of network disintegration and

immunization. However, it is infeasible to fragment the network entirely in many real

cases e.g., when vaccine resources are limited, or maintaining the normal operation

of society requires certain liquidity under travel restrictions [39, 40]. That is to say,

there are a certain size and quantity of connected components in the network after

immunization. In this context, not all possible spreading occurs in the GCC, and other

connected components also contribute to the spread of infectious diseases. Therefore, a

new index is required to evaluate the spreading risk of infectious diseases in a network

and design effective immunization strategies.

In this paper, we propose an indicator based on the size distribution of connected

components to measure the connectivity of the network. Minimizing this index by

removing a set of nodes or links, we could obtain an efficient immunization strategy

that minimizes the infection risk of individuals in networks. The remainder of this
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Efficient network immunization strategy 3

paper is organized as follows. In section 2, we present an index named the Generalized

Herfindahl–Hirschman Index (GHI) and a fast method to approximate the GHI is given

in section 3. In section 4, the GHI-based optimization model is proposed to design

an immunization strategy. The effects and characteristics of the strategy are discussed

through experiments in different networks and spreading models. Finally, the conclusion

and discussion are presented in section 5.

2. The definition of Generalized Herfindahl-Hirschman Index

Complex networks have long been acknowledged as a key ingredient of epidemic

modeling [41,42], which describes how individuals interact with one another. A complex

network can be described as an undirected graph G = (V,E), where V is the set of nodes,

and E ⊆ V × V is the set of edges. N = |V | and M = |E| are the number of nodes and

edges in the network, respectively. The spreading process in the network depends on

the network connectivity. The essence of immunization is to fragment the transmission

network into small connected components, the largest of which is the giant connected

component (GCC), and the GCC’s size is a common network connectivity measure.

However, when we evaluate the potential risk of infectious diseases, the size of the GCC

cannot reflect the infection risk of other components, in which infectious diseases can

also break out. Therefore, the infection risk of individuals in a network cannot be judged

directly by the GCC. For example, with the two networks presented in figure 1, it is not

clear whether the network in figure 1(a) has a lower risk of infection, even though it has

a smaller GCC than the network in figure 1(b).

As shown in figure 1(c), the network contains four connected components after

immunization. We assume that a disease hits a random node in the network, and

therefore all the nodes in the connected component containing the infected node have

the risk of being infected. The infection risk of the nodes in the network is defined as

the expected fraction of nodes at risk of infection in random outbreaks. In an epidemic

model, the nodes can be divided into different states, such as susceptible (S), infected (I),

or recovered (R), while the links allow contagion between the nodes. The susceptible–

infectious (SI) epidemic spreading model [1, 43] represents an infectious disease spread

in which infected individuals never recover and keep propagating the disease forever. In

the SI model, all the nodes of the connected component will be infected if one node of the

connected component becomes infected. Therefore, the infection risk of the individual

in the network is described as the expectation of an infection’s prevalence (the fraction

of infected nodes) in random outbreaks in the SI model, which can be approximated

by simulation. In this mechanism, we deduce an accurate expression for calculating the

infection risk of the nodes. Say that ni is the size of components Ci in the network,

where i = 1, · · · , L represents the serial number of components, and pi = ni/N is the

proportion of nodes in components Ci. Accordingly, the probability that a random

outbreak starts in component Ci is equal to pi, and the average number of nodes at risk
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Efficient network immunization strategy 4
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Figure 1: Schematic illustration of Generalized Herfindahl-Hirschman Index (GHI). For

two different immunization (attack) strategies, (a) one causes the remaining network

with N = 18, P∞ = 0.28, and (b) the other leads to the remaining network with

N = 18, P∞ = 0.34, and where P∞ is the proportion of nodes in the giant connected

component.(c) The network’s case is infected by an infectious disease that hits a node

(red) randomly, and the nodes in the component have the risk of being infected.

The expectation of the risk region’s size in random outbreaks starting from a single

random infected node is the Herfindahl–Hirschman index. (d) The infectious disease

has randomly infected three nodes (red) in the network. The expectation of the total

size of the risk region in random outbreaks starting from multiple random nodes is GHI.

of infection under the infection of a random node is

〈Rrisk〉 =
L∑
i=1

nipi = N
L∑
i=1

p2
i . (1)

After normalization, the expression of the infection risk of the nodes is equivalent to the

Herfindahl–Hirschman Index (HHI), denoted by φ.

φ =
〈Rrisk〉
N

=
L∑
i=1

(ni
N

)2

(2)

The HHI [44] is a commonly accepted measure of market concentration in

economics. It is calculated by squaring each firm’s market share competing in the

market and then summing the resulting numbers.

In epidemic outbreaks, the spreading usually starts from multiple infected nodes.

Therefore, we generalized HHI to the Generalized Herfindahl-Hirschman Index (GHI)

to measure the infection risk of the nodes from a multi-sourced infection. The

distribution of the infection sources in all L connected components is denoted by

α = (α1, α2, · · · , αL), where 0 ≤ αk ≤ nk, and
L∑
k=1

αk = Ω is the number of the initial

infection sources. Calculating the probability of α can be regarded as the problem of
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Efficient network immunization strategy 5

placing different sources of infection in different parts (nodes) of the network. The

problem is divided into two steps: The first step is to determine which connected

component each infection source corresponds to, and then the second step is to assign Ω

infection sources to different nodes in the corresponding component. For the infection

source distribution α, it contains all the results obtained by sampling the infection

sources according to the group division (α1, α2, · · · , αL), and the total number of all

sampling results is

C(α) =
Ω!

α1!α2! · · ·αL!
. (3)

Then, the probability of the distribution of the infection sources α is

P (α) = C(α)
(N − Ω)!

N !

∏
1≤i≤L

ni!

(ni − αi)!
. (4)

For example, in figure 1(d), three nodes are initially infected in the network and

α = [2, 1, 0, 0, 0]. First, different sources of infection are marked with the order

1, 2, 3 and placed into the components. The total number of placement methods is

C([2, 1, 0, 0, 0]) = 3. After determining the corresponding relationship between the

infection sources and the connected components, the sources are put into the network in

order. For a certain placement method such as 1→ C1, 2→ C1, 3→ C2, the probability

of putting the infection source 1 in C1 is n1/N . After node 1 is infected, subsequent

nodes cannot re-infect node 1, so the probability of putting the infection source 2 in

C1 then becomes (n1 − 1)/(N − 1). Similarly, the probability of putting the infection

source 3 in C2 becomes n2/(N − 2). The probabilities are the same for different initial

infection results under the same infection source distribution. Finally, the probabilities

of all possible outcomes are added together to get the probability of the distribution α.

Considering the set of all possible α: A=

{
α| 0 ≤ αk ≤ nk,

L∑
i=1

αk = Ω, k = 1, · · · , L
}

,

the GHI (φΩ) is defined as

φΩ =
∑
α∈A

[
P(α)

∑
1≤i≤L

I (αi) pi

]
, (5)

where I(αi) =

{
1, αi > 0

0, αi = 0
is the characteristic function of αi, and

∑
1≤i≤L

I (αi) pi is the

total proportion of nodes at risk of infection (nodes belonging to infected components).

The GHI is equal to Ω/N when the network consists of many small components of

relatively equal size. In this case, GHI approaches 0 if the initial number of infected

nodes Ω is very small compared to N (φΩ = Ω/N,Ω � N, φΩ → 0). In addition,

GHI reaches its maximum 1 when the network is connected (φΩ =
∑

α∈AP(α) = 1).

The GHI is formally equivalent to the HHI when Ω = 1. Using (5), the infection risk

of the two networks can be calculated as φ1 = 0.2531, φ3 = 0.607 in figure 1(a) and

φ1 = 0.2407, φ3 = 0.5673 in figure 1(b), respectively. The network in figure 1(a) has a

greater risk of infection than the network in figure 1(b) although it has a smaller GCC.
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Efficient network immunization strategy 6

It is notably complicated to use equation equation (5) to calculate φΩ because

there are numerous combinations of α. The number of possible situations increases

exponentially with the number of initial infections and connected components.

3. Approximation of the GHI

In this section, an approximate expression of GHI is considered for fast calculation.

The actual initial number of infection sources is much smaller than the total number of

individuals (i.e., Ω� N), so we obtain

(N − Ω)!

N !
=

1

N(N − 1) · · · (N − Ω + 1)
≈ 1

NΩ
=
∏

1≤i≤L

1

Nαi
(6)

and

ni!

(ni − αi)!
= ni(ni − 1) · · · (ni − αi + 1) ≈ ni

αi , (7)

and equation (4) is simplified to

P(α) = C(α)
∏

1≤i≤L

(ni
N

)αi

= C(α)
∏

1≤i≤L

pαi
i . (8)

Meanwhile, we could relax the restriction αk ≤ nk in A, when Ω � N, i.e., one allows

cases for which αk > nk, and obtain A=

{
α|αk ≥ 0,

L∑
i=1

αk = Ω, k = 1, · · · , L
}

. For set

A, αk ≤ nk holds for most connected components when Ω� N. Therefore, replacing A
with A has little effect on the result of calculating GHI.

φΩ ≈
∑
α∈A

(
P(α)

∑
1≤i≤L

(I (αi) pi)

)

=
∑

1≤i≤L

(
pi ×

∑
α∈A∩{α|αi 6=0}

P(α)

)

=
∑

1≤i≤L
pi

(
1−

∑
α∈A∩{α|αi=0}

P(α)

)

=
∑

1≤i≤L
pi

(
1−

∑
α∈A∩{α|αi=0}

Ω!
α1!α2!···αL!

∏
1≤j≤L

pαi
j

)
(9)

For αi = 0, we can use the multinomial theorem to simplify equation (9) and

approximate equation (5) as

φΩ =
∑

1≤i≤L
pi

(
1−

∑
α∈A∩{α|αi=0}

Ω!
α1!···αi−1!αi+1!···αL!

∏
j 6=i,1≤j≤L

pαi
j

)

=
∑

1≤i≤L
pi

1−

( ∑
j 6=i,1≤j≤L

pj

)Ω


=
∑

1≤i≤L
pi

(
1− (1− pi)Ω

)
,

(10)
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Figure 2: The time cost and accuracy of φΩ (blue line) and φΩ (red line) on Erdős-

Rényi (ER) networks. (a) The relationship of the φΩ, φΩ running time and the number

of initial infection sources Ω. In the inset of (a), the time cost of φΩ is extended from

Ω = 1 to Ω = 100. (b) The relationship of ∆, ∆ and Ω on the ER network with N = 100

and average degree 〈k〉 = 1.5. The ∆, ∆ is the absolute value of the difference between

φΩ, φΩ and ρI (the average infection’s prevalence of outbreaks) in 106 simulations of

the SI model. In the inset of (b), the ∆ calculated by φΩ is extended from Ω = 1 to

Ω = 100, and ∆ is less than 0.0125 on the left side of the dashed line. The dashed line

represents the case of Ω/N = 0.2.

in which 1 − (1− pi)Ω is the probability of infection in the connected component Ci.

Hence, the physical explanation for equation (10) is the sum of expected infection risk

for each connected component. The cause of the discrepancy between equation (10) and

the precise form equation (5) is that equation (10) allows different sources to infect the

same node in the network repeatedly. However, the possibility of a repeated infection is

small when Ω� N. So it is reasonable to use φΩ as an approximation of φΩ. Equation

(10) is also equivalent to the precise form equation (5) when Ω = 1.

Next, we compare the computation times for φΩ and φΩ in the Erdős-Rényi (ER)

network with different numbers of initial infected nodes. The results are shown in figure

2(a), the computation time of φΩ increases exponentially with the number of infected

nodes, preventing it from being executed even with few initial infection sources. The

running time can be considerably reduced by the approximate calculation φΩ. Due to the

high time complexity of φΩ, we use the ρI instead of φΩ to verify the effectiveness of φΩ

in subsequent experiments, where ρI is the average infection’s prevalence (the fraction of

infected nodes) obtained from simulations of the SI model. In the simulation, we let each

node is initially infected with the probability I0, and then iterate the SI process with

synchronous updating. After the system reaches the state, ρI is obtained. To verify the

effectiveness of φΩ and φΩ, we present a comparison between φΩ, φΩ and ρI . In figure

2(b), we can see that the ∆ = |φΩ − ρI | and ∆ =
∣∣φΩ − ρI

∣∣ are so minute that they

have little effect on infection risk analysis only. Notably, the results of φΩ are almost

consistent with our simulation results, which verifies the correctness of equation (5).

Overall, we can conclude that φΩ provides an accurate estimation of GHI at acceptable
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Figure 3: The performance of φI0 on ER networks with N = 10 000 and different average

degree 〈k〉. The ER networks are the same for a fixed 〈k〉 in different experiments. (a)

Comparison of φI0 (lines) and ρI (symbols) with a different I0, where ρI is the average

fraction of infected nodes obtained from simulations of the SI model. When I0 is less

than about 0.2, the φI0 tends to have the same value as the spreading simulation. The

dashed lines in this graph are P∞ for each ER network, where P∞ is the proportion of

nodes in the giant connected component. Approximate estimations of the ρI using the

φI0 under I0 = 5% in the ER network with randomly removed edges (b) and nodes (c),

where qe is the proportion of edges removed and qn is the proportion of nodes removed.

running times when Ω� N.

In general, the number of initial infection sources Ω is unknown, but the initial

infection proportion of the epidemic in the population, denoted by I0, can generally be

estimated from statistical sampling or clinical data. When I0 is known, equation (10)

can be extended to equation (11). Different from the precise number of infection sources

Ω in a single outbreak, N × I0 represents the expectation of the number of infection

sources when each node is initially infected with the probability I0.

φI0 =
∑

1≤i≤L

pi

(
1− (1− pi)N×I0

)
(11)

To further verify that φI0 can effectively estimate GHI, φI0 is compared with the

infection’s prevalence ρI in an epidemic under the SI model for the networks with

different component distributions. In figure 3(a), we generate disconnected ER networks

with different numbers and sizes of connected components by adjusting the average

degree 〈k〉. Moreover, we randomly remove the edge (in figure 3(b)) or nodes (in figure

3(c)) in the ER network to create different component distributions. The results in figure

3 shows that the simulations (symbols) are in excellent agreement with the theoretical

results (lines). These results indicate that φI0 can reasonably estimate the GHI, which

is especially true when I0 ≤ 0.1. With a low level of time complexity and effective

estimates of GHI, an efficient immunization strategy aims to reduce the indicator φI0 of

the network after immunization.
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Efficient network immunization strategy 9

4. Efficient immunization strategy based on the GHI

4.1. The optimization model of the immunization strategy

Vaccination is one of the most effective ways to prevent or suppress the spread of

an epidemic. From the viewpoint of vaccination, immunization corresponds to an

attack that destroys the network on which it could spread. This paper considers node

immunization approaches and assumes that the attached spreading edges are removed

if a node is immunized. The set of immunized nodes is denoted by Vimmu. The number

of immunized nodes is denoted by n, and p = n/N is the immunized proportion of the

nodes. An immunization strategy is defined by X = (x1, x2, · · · , xN), where xj = 0

if vj ∈ Vimmu, otherwise xj = 1. Thus, we obtain the number of immunized nodes

n = N −
N∑
j=1

xj. The goal of our immunization method is to identify the optimal

solution X∗ which could minimize the GHI of the network after immunization. With

the knowledge of I0, we define ΦGHI(X) as the φI0 of the network immunized by strategy

X. We introduce an optimization model to solve the immunization strategy, which can

be described as

min ΦGHI (X = (x1, x2, · · · , xN))

s.t.


n = N −

N∑
j=1

xj

xj = 0 or 1

j = 1, 2, . . . , N

(12)

where j = 1, · · · , N represents the serial number of nodes, and ΦGHI(X) is used as the

objective function of the optimization model to measure the effect of X. The solution

of the optimization model determines the optimal GHI strategy.

As a contrast, the optimal GCC strategy replaces the objective function ΦGHI(X)

in equation (12) with ΦGCC(X) to minimize the GCC of the network, where ΦGCC(X)

is the size of the GCC in the network after immunization. Meanwhile, we also compare

the optimal GHI strategy with mainstream strategies, including a high-degree adaptive

(HDA) strategy and the collective influence (CI) strategy [31]. The HDA strategy

removes the nodes according to the adaptive computation of the degree. The CI strategy

iteratively calculates the CI value of nodes and removes the node with the highest CI

value. The CI value is an extension of the degree centrality which concerns the neighbors

of node vj at a distance of ` and that was set at ` = 2 in this paper.

4.2. Experimental design

4.2.1. Tabu search algorithm. The tabu search algorithm [36, 45] has been proved to

be an effective method for solving similar problems in the network and thus has been

applied here to seek the optimal solution for the above optimization model. The basic

principle of the tabu search is to pursue an optimal solution whenever it encounters a

local optimum by allowing non-improving moves. Cycling back to previously visited
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Efficient network immunization strategy 10

solutions is prevented by using memories, called tabu lists, that record the search’s

recent history. The procedure of the algorithm is described below.

Step 1: Initialization. We set the length of the tabu list Ltabu = 100, the number

of candidates ncan = 500, the maximum total iteration number Tmax = 30 000, the

maximum iteration number without improvement of solution nmax = 5 000. The

termination condition of the algorithm is when the present iteration step Titer reaches

Tmax or the number of iterations for which the optimal solution is not updated niter
exceeds nmax.

Step 2: Generate the initial solution X0. X0 can either be given randomly or by

another strategy with a better performance. Let the current best solution Xopt = X0.

Calculate Φ(Xopt).

Step 3: Determine the termination condition. If Titer > Tmax or niter > nmax, the

process stops and output Xopt as the results; otherwise, continue to Step 4.

Step 4: Generate candidate solution. Generate ncan new candidate solutions Xcan

by swapping the state of two nodes randomly. DetermineXnow byXnow = max Φ(Xcan).

Step 5: Update the tabu list. Determine whetherXcur /∈ Tlist or Φ(Xcur) < Φ(Xopt)

(aspiration criterion). If satisfied, add Xcur to Tlist. If not satisfied, find another Xcur

s.t. Xcur = max Φ(Xopt) and Xcur /∈ Tlist, and then add Xcur to Tlist. Notably, all the

elements in the tabu list are abandoned in a certain number of iterations Ltabu.

Step 6: Update the current best solution Xopt. Determine whether Φ(Xcur) <

Φ(Xopt). If satisfied, then Φ(Xopt) = Φ(Xcur), Tlist = NULL. If not satisfied, then

return to step 3.

After obtaining the approximate optimal solution, a set of nodes is identified whose

removal from the network can minimize Φ(X). The optimal GHI and the optimal

GCC strategies are obtained by using the objective function ΦGHI(X) and ΦGCC(X),

respectively.

4.2.2. Networks. Many social networks conform to the typical characteristics of small-

world, scale-free, or community structures. Hence, we analyze the case of three basic

model networks, the Watts–Strogatz (WS) network [46], the scale-free (SF) network [47],

and the KOSKK network [48,49].

The WS model starts from a ring of N = 1 000 vertices, each of which symmetrically

connects to its four nearest neighbors. Then, a fraction of the edges in the network are

rewired by visiting all four clockwise edges of each vertex and reconnecting them, with

probability pre = 0.5, to a randomly chosen node.

The SF network is generated using preferential attachment [50], which signifies that

the more connected a node is, the more likely it is to receive new links. The preferential

attachment model is initiated with a small nucleus of m0 = 5 fully connected nodes.

Then, at every time step, a new node is added, with m = 4 links connected to an old

node vj whose degree is kj with the probability equal to kj/
∑

j kj.

The KOSKK model is a dynamic network evolution model [48,49] that can generate

networks with typical features of social networks by utilizing network link weights.
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Efficient network immunization strategy 11

Table 1: The basic topological features of the networks. N and W are the number of

nodes and links, where βth = 〈k〉 / 〈k2〉 is the epidemic threshold of a network, and 〈k〉
and 〈k2〉 are the mean degree and second-order mean degree of a network, respectively.

C is the average clustering coefficient of a network.

Network N W 〈k〉 βth C

WS 1000 4000 8 0.1196 0.0907

SF 1000 3904 7.81 0.0508 0.0436

KOSKK 1000 4474 8.95 0.0699 0.5532

Politic Blog 1222 16714 27.36 0.0123 0.3203

Arenas Email 1133 5451 9.62 0.0535 0.2202

US air 332 2126 12.81 0.0225 0.6252

The network is initiated with N nodes andzero edges, and then evolved with three

mechanisms:

1. Local attachment. Select a node vj randomly, and choose one of neighbor vk
with probability ωjk/

∑
k ωjk, where ωjk is the weight on link ejk. If vj has another

neighbor, choose one of them with probability ωkl/
∑

l (ωkl − ωjk). If there is no link

between vj and vl, connect vj and vl with probability p∆ and set the weight of new link

as w0. Increase link weight by δ.

2. Global attachment. Connect vj to a random node with probability pr (or with

probability 1 if vj has no connections) and set the weight of new link as w0.

3. Node deletion. Select a random node and with probability pd remove all of its

connections.

The network is obtained after 107 time steps evolution, and the parameters are set

as N = 1 000, ω0 = 1, pr = 0.005, pd = 0.001, p∆ = 0.25, and δ = 0.6.

4.2.3. Simulations of epidemic spread. The SI model is somewhat of an

oversimplification that is valid only in cases where the time scale of recovery is much

longer than the time scale of infection. More realistic models have been proposed in

order to better accommodate the biological properties of real diseases. For instance, the

susceptible–infectious–susceptible (SIS) and the susceptible–infectious–recovery (SIR)

epidemiological models [1, 43]. To study the optimal GHI immunization strategy, we

compared its efficiency with other strategies in the SIS and SIR models. The comparison

results are given in figures 4 and 5. The SIS and SIR models are widely used to simulate

the spread of epidemics in a network. In the SIS and SIR models, each node of the

network represents an individual, and each edge is a connection through which the

infection can spread. In the simulations of this paper, the SIS and SIR spreading

processes are implemented by using synchronous updating methods. Namely, at each

time step, each susceptible node is infected by its infected neighbor (the node connected)
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Efficient network immunization strategy 12

with probability β (infection rate) if it is connected to one or more infected nodes. At the

same time, all infected nodes recover with probability µ (recovery rate). The dynamical

process terminates when the system reaches a steady state. The SIR model assumes

that an infectious individual who recovers from the disease has acquired permanent

immunity. In the SIR model, the infection will eventually die out. Conversely, the SIS

model assumes that the disease does not confer immunity so that individuals can be

infected over and over again. Under SIS, the disease can reach an steady state, where a

certain fraction of the population are kept infected. Considering this difference, when we

measure the result of the SIR model, the fraction of individuals who have ever caught

the disease is denoted by ρR. For the SIS model, it is the fraction of infected nodes

persisting in the steady state denoted by ρI . p is defined as the fraction of immunized

nodes.In the simulation, each node is initially infected with the probability I0 = 5%

(independent of the other nodes), and the spreading model starts with the parameters

β=0.25 and µ=0.1, averaging over 10 000 independent runs.

4.3. Results in synthetic and real networks

To study the efficiency of the optimal GHI strategy, we focused on the fraction of

infected nodes ρI (steady state) in the SI and SIS models, and the fraction of recovery

nodes ρR (steady state) in the SIR model. Smaller ρI or ρR indicates higher efficiency

of a strategy. In the simulations, we look at the ρI or ρR in the stationary regime

(steady state) as a function of the fraction of immunized nodes p. We implement the

optimal GHI strategy and other strategies to immunize p proportions of individuals in

the networks. Then we let each node is initially infected with the probability I0 = 5% ,

and iterate the SI, SIS, and SIR infection process with synchronous updating. The SI,

SIS, and SIR process are implemented with a fixed infection rate β = 0.25, and the SIS,

SIR process fix the recovery rate µ = 0.1. After the system reaches the steady state, ρI
or ρR is obtained.

The results of the model networks shown in figure 4 reveal that the optimal GHI

strategy has better performance than other strategies, especially in the WS and KOSKK

networks. Meanwhile, the advantage of the optimal GHI strategy is not evident in the

SF network for the SIR model, and the effects of the HDA and CI strategies are close to

that of the optimal GHI strategy. The temporal evolution of spread process in networks

after immunization are given in the insets. For all networks, the infected fraction is

significantly lower when using the optimal GHI strategy as compared to other strategies

with the same fraction of immunization doses.

The model networks cannot fully describe the characteristics of the real systems.

Therefore, we also implemented the selected strategies for three real-world network

examples through which epidemics are spread: the Politic Blog network [51], the Arenas

Email network [52], and the US air transportation network [53]. The details of these

networks are given in table 1. Some conclusions obtained from the model networks are

also shown in the real networks. The experiments demonstrate that the optimal GHI
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Figure 4: Comparisons of the immunization strategies HDA (blue line), CI (yellow line),

optimal GCC (green line), and optimal GHI (red line) for several artificial networks:

(a) the WS network, (b) the SF network, and (c) the KOSKK network. Plotted is the

fraction of infected ρI or recovered individuals ρR at the steady state as a function of

the immunized node fraction p in the SI, SIR, and SIS models. In the insets, temporal

evolution of the spread process for the point in the dotted–dashed box are shown, where

Pi is the fraction of infected nodes and Pr is the fraction of recovered nodes. The

experiments set the infection rate β = 0.25, the recovery rate µ = 0.1, and I0 = 5%.

strategy exhibits a clear advantage with fewer nodes immunized to achieve the same

immunization effect when compared to other targeted strategies (figure 5). In addition,

the fraction of infected individuals for the optimal GHI strategy is significantly lower

than those for other strategies with the same fraction of immunization doses. These

results show that the optimal GHI strategy for scale-free characteristics in real networks,

and reducing the size of the GCC (P∞) is not as effective as reducing the GHI in the

network.

The network is fragmented into many connected components of different sizes by

immunization. The size distribution of connected components plays a more significant

role than the topology in components for these networks. The immunization strategies
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Figure 5: Comparison of the optimal GHI strategy and other immunization strategies

for several real-world networks: (a) the Politic Blog network, (b) the Arenas Email

network, and (c) the US air transportation network. The experiments set the infection

rate β = 0.25, the recovery rate µ = 0.1, and I0 = 5%.

with different mechanisms make the distribution of connected components of the network

after immunization different. GHI is used to evaluate the infection risk of the network

after immunization based on the distribution of connected components. Therefore, the

optimal GHI strategy, which minimizes the GHI by immunizing nodes, shows great

advantages on immunization in different networks through other strategies.

4.4. Robustness of the optimal GHI strategy

So far, we have focused on the performance of the optimal GHI strategy in different

networks. These results suggest that, although GHI cannot accurately quantify the

expected infection’s prevalence under the SIS and SIR models, GHI reflects the

structural connectivity of the network and quantizes the impact of the distribution

of connected components to the spreading. However, the parameters of the dynamic

models are also factors which affect the result of simulation. In previous experiments,

the parameters of the SIS and SIR models are fixed. Next, we need to verify whether
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Figure 6: Comparisons of the optimal GHI strategy and other immunization strategies

under different paramenters in the SIR and SIS models. Plotted is the fraction of infected

individuals ρI (steady state) and the fraction of recovered individuals ρR (steady state)

versus the infection rate β (a), the recovery rate µ (b), and initial infection proportion I0

(c). The experiments immunized a nodes fraction p = 0.1 of the US air transportation

network and set the control variables as β = 0.25, µ = 0.1, and I0 = 5%. The dashed

lines in this graph are the φΩ of networks after immunization for each strategy.

the strategy is effective under different parameters in the epidemiological model. In this

section, we move our focus to the robustness of the optimal GHI strategy and define the

robustness in two ways. On the one hand, we consider the robustness of the strategy in

terms of sensitivity to infectious disease model parameters. On the other hand, we also

evaluate the robustness against the deviation of prior information in the sense of how

well the optimal GHI strategy yields, even when the estimated value we obtained does

not strictly agree with the precise I0.

To further clarify what types of infectious diseases the optimal GHI strategy is

suitable for, the performance of different strategies is compared under different infectious

disease model parameters on the US air transportation network. There, an infected

airport implies that sick people arrive or depart from it. Consequently, immunization

means all people at an airport are screened, flights are canceled, or the entire airport is

shut down. In figure 6(a), we immunized a fraction p = 0.1 of nodes and compared the

impact of different infection rates β on the efficiency of the optimal GHI strategy and

at a fixed recovery rate µ = 0.1. Similar experiments were done under different recovery

rates µ, at a fixed infection rate β = 0.25 (figure 6[b]). When β is high or µ is low,

the proportion of infections under the optimal GHI strategy maintains a relatively low

level. As β increases or µ decreases, the infection’s prevalence in the simulation is tend
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Figure 7: Performance of the optimal GHI strategy with a certain missing accuracy of

I0 on the US air transportation network: (a) Comparison of the optimal GHI strategy

obtained by Î0 = 5% with other strategies for simulations with different I0. (b) The

simulation results for different optimal GHI strategies obtained through different Î0

under the same I0 = 5%. The dashed lines represent the case of Î0 = I0.

to the value of GHI in the network, and the advantages of the optimal GHI strategy

increase significantly. The results show that the effect of the optimal GHI strategy is

pronounced for infectious diseases which are highly contagious and difficult to recover.

Moreover, from the simulation result in figures 6 (a) and (b), the optimal GHI strategy

which is effective in the SI model is similarly effective for SIS and SIR models. The

effective parameter range of the optimal GHI strategy is suitable for the infection and

recovery rates of many real infectious diseases, e.g., SARS and COVID-19.

In addition, we tested the effects of the optimal GHI strategy to deal with the

different initial infection proportions I0 shown in figure 6(c). It can be seen that the

reduced prevalence when the optimal GHI strategy is used performs much better than

other strategies under different I0.

Meanwhile, in a real-world situation, there is typically no access to the precise

initial infection proportion (denoted by I0) , and estimated values of I0 (denoted by Î0)

are generally used to guide decisions. Meanwhile, the initial sources of infection are also

not randomly generated and present correlation and aggregation. These factors imply

that the Î0 referred to for making decisions has a certain deviation from I0. Thus far,

we have conducted simulations with the assumption that we know a precise I0, which

is the ideal case for Î0 = I0. Now, we consider how robust the optimal GHI strategy

is against the noise of I0. In the experiment, Î0 is the initial infection proportion used
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to formulate the optimal GHI strategy, and I0 is the initial infection proportion used

in the simulations of the SIS and SIR model. Without the knowledge of the real I0,

we formulate an optimal GHI strategy based on the estimated Î0 value. To determine

whether this strategy is still valid in the simulation with real I0, we test the effectiveness

of the strategy in simulation experiments with different I0. As is shown in figure 7(a),

we take Î0 = 5% to obtain the optimal GHI strategy and study the effects of the optimal

GHI strategy for simulations under different I0. We find that the epidemic can still be

more effectively controlled by the optimal GHI strategy than by others given the same

conditions. Moreover, to further test the impact of the estimation accuracy of I0 on the

effect of the optimal GHI strategy, we fixed the I0 used in the simulation to test the effect

of strategies obtained by different estimated values Î0. Figure 7(b) shows the effects of

the optimal GHI strategy obtained with different Î0 for the simulation under I0 = 5%.

It suggests that our optimal GHI strategy still maintains an effective performance even

if there is a certain deviation between the Î0 we obtained and the actual value I0. As

the estimated Î0 moves closer to the actual I0, the effect of the optimal GHI strategy

becomes increasingly evident.

Based on these experiments, we conclude that the optimal GHI strategy exhibits a

low sensitivity to the epidemiological model parameters and a certain robustness against

the noise of I0.

5. Conclusion and discussion

In this paper, we proposed the indicator named GHI to measure the infection risk of

individuals in a network according to the number of infection sources, along with a

computationally efficient method to approximate it. We set our immunization goal as

minimizing GHI and established an optimization model to search for the immunization

strategy. Our method can immunize or quarantine the population against possible

multi-regional outbreaks based on initially infected proportions. We discussed extensive

experiments on both synthetic and real-world networks using SIS and SIR simulations.

The results show that the optimal GHI method is significantly more efficient at

preventing the spread of disease spreading than other basic immunization methods,

especially with highly infectious or low recovery rate diseases. Moreover, our strategy

shows a certain robustness for deviations in this prior information, which makes the

method suitable for the requirements of practical applications.

GHI measures the upper bound of the expected fraction of infected nodes, which is

based on the strong assumption that all nodes in the connected components containing

infected nodes are at risk of infection. There are many different methods to minimize

GHI besides immunization of nodes, such as immunization of links and community

isolation. Further research may consider the following two aspects. On the one hand,

GHI can be introduced to more application scenarios, and its properties need to be

explored further. On the other hand, the tabu search algorithm we utilized in this study

is computationally expensive and complex in the face of certain large-scale networks.
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Therefore, it is necessary to explore heuristics to reduce the computational complexity.
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